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Some theorems proved by Thorpe concerning the connection between the 
critical point structure of the Riemannian (sectional) curvature function 
and the Petrov classification are extended. A similar function is defined 
whose critical point structure is connected with the algebraic classification 
of the Ricci tensor. 

1. INTRODUCTION 

A geometrical interpretation of the Petrov classification of gravitational 
fields in General Relativity theory has been given by Thorpe (1969), who 
considered the critical points of a certain real-valued function. Let M be a 
space-time manifold and let Tp(M) denote the tangent space to M at p. If  
G is the four-dimensional (Grassman) manifold of all two-dimensional sub- 
spaces (2-spaces) of T~(M), let G be the (four-dimensional) open submanifold 
of G consisting of all nondegenerate (non-null) 2-spaces of Tv(M). One now 
introduces the Riemannian (sectional) curvature function as a differentiable 
map %: G - +  N which associates with each 2-space F in (7 its Riemannian 
curvature 

%(F) = R~caF~bFC~ (1.1) 
2g~EegajbFa~F ca 

where R~bca, g~b, and /~b are the components, in some chart about p, of 
the Riemann tensor, the metric tensor and any simple bivector representing 
the nondegenerate 2-space F. Thorpe demonstrated a connection between the 
critical points of the function c~ and the Petrov classification of Einstein 
spaces 1 (space-times in which the Ricci tensor is proportional to the metric 

1 Details of the Petrov classification may be found in the articles of Bel (1962), Sachs 
(1961), and Ehlers and Kundt (1962). A discussion of critical points of functions on 
manifolds is contained in Milnor's book (1963). 
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TABLE 1 

Number n of spacelike 
critical points of ap 
Petrov type 

0 1 3 oe 
III II I II degenerate (N) 

nondegenerate nondegenerate I degenerate (D) 

tensor). In fact, Thorpe showed that for Einstein spaces, the Petrov type of 
the Riemann tensor and the number n of spacelike critical points of  % are 
connected as shown in Table 1.2 That  only spacelike critical points need be 
considered is a consequence of the fact that in Einstein spaces, complementary 
2-spaces represented by a certain simple bivector and its dual have the same 
Riemannian curvature. This follows from the relation 

Rabca = - Rabca (1.2) 

which is equivalent to the Einstein space condition. The symbol * in the 
appropriate place denotes the duality operator. 

The Petrov type O case is characterized by the condition that Rabca is 
proportional to gaEogalb or, alternatively, by the condition that % be a constant 
function on G. 

Thorpe also showed that in an Einstein space, the function % could be 
continuously extended to all null 2-spaces at p if and only if % was a constant 
function on G. 

In this paper it will firstly be shown that one may define a differentiable 
function Cp: G--> R whose critical point structure is connected in a similar 
way to the algebraic classification of the Ricci tensor as the function up is to 
the Petrov classification of the Riemann tensor in an Einstein space. 

Secondly, Thorpe's  results concerning the continuous extension of the 
function % to null 2-spaces will be extended. I t  will be shown that if up can 
be continuously extended to a single null 2-space then it is necessarily a 
constant function on G. Further, this result will be proved without the use 
of  the Einstein space condition so that it applies quite generally to the 
Riemann tensor a tp .  A similar result will be proved for the function Cp where 
it will be found that ifCp can be continuously extended to a single null 2-space 
then it is necessarily a constant function (in fact the zero function) on G and 
the Ricci tensor is proportional to the metric tensor at p. 

Finally, some discussion of the classification theorems and some 
concluding remarks will be given in the final section of the paper. 

2 The statement of the connection given in Thorpe's paper is incomplete in that the 
Petrov type N case is omitted. 
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2. THE CLASSIFICATION 

One first introduces a tensor E which is entirely equivalent to the trace- 
free Ricci tensor R where, in coordinates, Rab = Rab -- �88 with Rab and 
R the components of the Ricci tensor and its contraction, respectively. The 
equivalence of E and R is contained in the component relation 

Eabca = �89 -- /~bcgaa + /~agac -- Radgb~) (2.1) 

The tensor E has all the algebraic symmetries of the Riemann tensor and 
vanishes at a point p if and only if Rab is proportional to gab at p. It satisfies 
the relations 

- E a f b  = -Rab,  *Ea~a = - E%~a, *E'boa = Eabca (2.2) 

The tensor E may be used as the basis of a classification of the Ricci tensor 
(Cormack and Hall, 1979) which, because of the algebraic similarities between 
the tensor E and the Riemann tensor, is similar to the Petrov classification 
and yields a classification which is equivalent to the usual one based on Segr6 
types. A summary of the resulting canonical forms is given in the Appendix. 

One can use the tensor E to construct the following real-valued 
differentiable function 4'p on (~ at p: 

Ea~aFa~F ~a 
q~,(F) = 2gaEcgalbFabF~ ~ (2.3) 

The function ~p is independent of the representative simple bivector Fab 
chosen for F. Also, if F and F* are complementary 2-spaces of T ~ ( M )  then 
it easily follows from (2.2) that q~p(F) = -q~(F*).  This means that in the 
classification, only spacelike critical points need be considered. 

To examine the critical point structure of q~p, let F be a spacelike member 
of (~. If  el, e2, e3, and e4 constitute a pseudo-orthonormal Lorentz basis of 
T ~ ( M )  with el, e2, and ea spacelike and e4 timelike and such that e: and e2 
span F(so  that e~ A e2 is a representative bivector for F), then it follows from 
the general theory of Grassman manifolds (Brickell and Clarke, 1970) that 
one can construct a chart about F in G which is contained in G and is such 
that a general member F '  of this chart to which are attached the coordinates 
(xl, x2, xs, x4) is spanned by vectors u and v in T~,(M), where 

u = et + xle8 + x2e~, v = e2 + xae8 + x4e4 (2.4) 

One can now readily evaluate 4,p(F') from (2.3) using local coordinates about 
p in the manifold M. In fact, one finds for F '  the representative bivector with 
components 

12  13  1 4  3 2  4 2  34  

F~b = Sab + x3F~o + x4Fa~ + xlF~b + x2Fa~ + (x:x~ - x2xs)Fab (2.5) 
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where 

and so 

and ~ 

Then 

where 

tt 
F =  e~ A es (1 ~< i,j~< 4) 

12 
F~b = F~b 

84 
= r ~  

4p(F') = E~bcaF'~bF'Cd 
f ( x l ,  x2, xa, x4) 

(2.6) 

f ( x l ,  x2, x3, x 4 ) =  (1 + x l  z -  x2z)(1 + xa 2 -  x~ 2 ) -  ( x l x 3 -  x2x~) 2 (2.7) 

The condition that F be a critical point of 4'p is now found by con- 
sidering the equations (with the usual abuse of notation) 

OX~IF,=F = 0 (i = 1, 2, 3, 4) (2.8) 

These equations are easily evaluated using (2.5), (2.6), and (2.7) and turn 
out to be equivalent to the conditions 

E~caF cd = arab + flF*b (a, fl E ~) (2.9) 

However, since F is represented by a simple non-null bivector, FabF *~b = 0 
and F*~F *ab ~ O. It then follows from the second equation in (2.2), the 
symmetry property E~bca = Eoa~b and the usual property of the duality 
operator, that /3 = 0 and that ep (F )=  �89 The resulting equation (2.9), 
bearing in mind (2.1), (2.2), and the fact that Fab is a simple bivector, is then 
seen to be the necessary and sufficient condition that the 2-space F is an 
invariant 2-space of the Ricci tensor (Cormack and Hall, 1979), that is if k ~ 
are the components of any member of F then the vector with components 
R%k ~ is also in F. 

Now the Ricci tensor when considered in the usual way as a linear map 
Tp(M) --> Tp(M) may take one of only four possible Segr6 types, {1, 1, 1, 1}, 
{2, 1, 1}, (3, 1}, and {z, 5, 1, 1}, together with their degeneracies (Plebanski, 
1964; Hall, 1976). Also, a simple connection exists between the Segr6 type 
of the Ricci tensor and its invariant 2-space structure (Cormack and Hall, 
1979) and a summary of this connection is given in the Appendix. From these 
results and those of the previous paragraph, one can construct a table (Table 

a The o r i en t a t i on  of the basis  is chosen  so tha t  this  dual  cond i t ion  holds.  
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TABLE 2 
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Number n of spacelike 
critical points of Cp 

Segr6 type 

0 1 3 oe 
{2, i, 1} all degeneracies 

{3, 1} {z, 2, 1, 1} of {1, 1, 1, 1} 
{(3, 1)} {2, (1, 1)} {I, 1, 1, 1} {(2, 1), 1} 

{z, Z, (1, 1)} {(2, 1, 1)} 

2) which gives the connect ion between the number  n of  spacelike critical 
points  of  Cp and the Segr~ type of  the Ricci tensor. The trivial case here is 
characterized either by the constancy of  ~p on G, the condit ion that  E~b~a = 0 

at p,  or the condit ion that  Rab is p ropor t iona l  to ga~ at p [see equations (2.1) 
and (2.2) at the end of  Section 3]. 

Since F is a spacelike invariant  2-space of  the Ricci tensor,  it follows 
that  F contains two or thogonal  spacelike eigenvectors of  the trace-free Ricci 
tensor  (Hall, 19764). The sum of  the corresponding eigenvalues is equal to 
the real number  c~ in (2.9). 

3. C O N T I N U O U S  E X T E N S I O N S  OF T H E  R I E M A N N I A N  
C U R V A T U R E  F U N C T I O N  

In his paper,  Thorpe  showed that  the function % could be extended 
cont inuously  to all null 2-spaces at p if and only if % was a constant  funct ion 
on G, or alternatively if and only if Rabca was propor t iona l  to gaEcg<b at p. 
In  fact a stronger result can be proved.  The function % need only be con- 
t inuously extendible to a s ingle  null 2-space at p for  it to be necessarily a 
constant  function on G and the p r o o f  makes  no use of  the Einstein space 
condi t ion at p and so holds for  a general R iemann  tensor. To  see this, let 
% be cont inuously extendible to the null 2-space F at p which is represented 
by the bivector I A x, where 1 is a null vector  and x a unit spacelike vector  
or thogonal  to I. Then the condit ion that  the real sequence {%(Fn)} be con- 
vergent,  where Fn is, in turn, the sequence of  non-null  2-spaces a t p  represented 
by the non-null  simple bivectors (I + t~y) A x ,  1 A (x  + tnm), and I A 
( x  + tny  + &m),  with m a null vector  and y a unit  spacelike vector  which 
together  satisfy the relations l . m  = 1, m . x  = y . I  = y . x  = y . m  = 0 and 
{&} a sequence of  nonzero real numbers  convergent  to zero, yields the com- 
ponent  relations at p 

RabcaF~bF ~a = Rab~aF ~b W ~a = RabcaF ~b W *cd = R~bcaF~b F * ~  = 0 (3.1) 

4 In result (iii) on p. 542 of this reference, the word "distinct" should be replaced by the 
word "orthogonal." 
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where Feb and Wab are the components of  the bivectors 21/21/~ x and 2l/x m, 
respectively. Equation (3.1) implies that 

RabcaF ca = c~Fab + fiF*b (% fi ~ R) (3.2) 

Further, a consideration of the limits of the above sequences {~p(Fa)} reveals 
that 

Rab~aW~bW ca + R~bcaW*~bW *ca = 0 (3.3) 

Next, one considers the sequence of non-null 2-spaces {F~} represented by the 
bivectors (l + sam + tay) /x x ,  where {s~} and {ta} are sequences of  real 
numbers convergent to zero, arbitrary except for the condition that the 
resulting bivectors are non-null, which is 2sa + t, 2 r 0 for each n. The 
convergence of {a~(F~)} in this case yields the component relations 

R~bcaNabN ~ = RabcaNabW *ca = 2R~b~aN~bF ~a - R~b~aW*~bW *~ = 0 (3.4) 

where Nab are the components of the bivectors 21/2rn /,, x. In a similar fashion, 
the sequences of non-null 2-spaces represented by the bivectors (l + s~m) /x 

(x  + tam) and (l + sam) /~ (x  + tay) may next be used. Here, {s,} and {ta} 
are real sequences convergent to zero restricted only by the conditions that 
for each n, 2sa - t~ 2 r 0 in the first case and s,  # 0 in the second. The 
resulting component relations are 

R~bcaN ~b W ~a = RaboaF*~bF *ca = 0 (3.5) 

Finally, consideration of more general sequences represented by bivectors of 
the form (l + s~y + tam) /x (x  + PaY + q~m), where {s~}, {t,}, {p.}, and {q.} 
are appropriately chosen real sequences convergent to zero, yields the final 
relations 

2Rab~aF~N*~a = 2RaboaF*abN ~ = - R~b~a W ab W *~a (3.6) 

R~b~aNabF ~a + R~bcaN*~bF *ca = 0 (3.7) 

R~b~aN~bN *ca = R~bcaW~bN *~ = R~bcaW*abN *~ = R~boaN*abN *~ 

= R~bcaF*abw ca = RabcaF*~bw*~a -~ 0 

(3.8) 

Thinking of the Riemann tensor at p as having 21 components governed 
by the single linear relation R~tb~a ~ = 0, one sees from the equations of this 
section that these 21 components are determined by two arbitrary real 
numbers and from the real and imaginary parts of the bivector completeness 
relation given in the Appendix, one can see that the Riemann tensor at p can 
be expressed as 

Rab~a = Ag,~gal~ + B(--g)l/%ab~a (3.9) 
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where g = det g~b, E~b~a is the alternating symbol and A, B ~ ~. The condition 
R~bca~ = 0 then implies that B = 0 and so the Riemann tensor has the 
required form at p and ap is a constant function on G. 

I f  the Einstein space condition holds at p, then the above proof  can be 
simplified by virtue of  the condition (1.2) connecting the values of ap on dual 
2-spaces. 

A similar proof  also shows that if the function ~p can be extended 
continuously to a single null 2-space, then at p, E~b~a necessarily takes the 
same form as that given in (3.9) for R~b~a. Again the above proof  may be 
simplified on account of  the duality conditions in (2.2). Then the conditions 
EaEbcal = 0 and E ~ ( =  /~a) = 0 give A = B = 0. Thus E~boa = 0 and this 
is equivalent to the Ricci tensor being proportional to the metric tensor at 
p. Hence Cp is a constant function (the zero function) on G. 

4. D I S C U S S I O N  A N D  C O N C L U D I N G  R E M A R K S  

Suppose now that the Einstein space condition holds at p and that the 
Petrov type is nontrivial there. It  is clear from Table I that the existence of 
infinitely many spacelike critical points of  % does not uniquely determine 
the Petrov type at p. Similar problems arise with the function r in the 
determination (to within degeneracy) of  the Segr6 types of the Ricci tensor 
in the cases n = 1 and n = c~ of Table II. Considering the function % first, 
the following result (Hall, 1978) shows how a simple condition on % may 
be used to distinguish between the Petrov types for the case n = oe. Let 
S(l)  denote the two-dimensional submanifold of  G consisting of spacelike 
2-spaces orthogonal to the null vector ! e T~(M). The members of S(l) have 
the physical interpretation of being the family of  wave surfaces of  / - - the  
totality of  instantaneous wave surfaces to l of  all observers with all possible 
velocities at p. The result (more precisely a special case of it) then states that 
if the Einstein space condition holds at p and if the Petrov type is nontrivial 
there, then % is constant on S(I) if and only if the Riemann tensor is alge- 
braically special in the Petrov classification at p with l as a repeated principal 
null direction (l~lcR~bca ~ Ibla). Since the two Petrov types N and D which 
occur in the case n -- ov have exactly one and exactly two repeated principal 
null directions, respectively, and since % determines principal null directions 
according to the above result, the cases are distinguished. 

Similar results hold for the function Cp. In fact, only slight modifications 
are required in the above result for it to say that Cp is constant on S(l)  if and 
only if I is a Ricci eigenvector at p. To see this one first shows that the con- 
stancy of Cp on S(l)  is equivalent to the condition E+~bca V ~a cc V~ at p, where 
E~b~a + = Eab~a + iE*bca and V~b = F ~  + iF* .  This is then equivalent to l 
being a null Ricci eigenvector at p (Cormack and Hall, 1979). So Cp can 
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determine null Ricci eigenvectors and the discussion is completed by noting 
that  in the cases n = 1 and n = o% Ricci tensors with Segr~ type {z, 2, 1, 1} 
or its degeneracy have no null eigendirections, those with Segr6 type {2, 1, 1} 
or its degeneracies have a unique null eigendirection, and those with Segr6 
type {1, 1, 1, 1} or its degeneracies have either no or at least two null eigen- 
directions (see the Appendix).  

One final point  can now be discussed. A function which is reminiscent 
o f  the functions % and Cp above was considered many  years ago by Eisenhart  
and was based on the work  of  Ricci (see, for  example,  Eisenhart ,  19665). 
This function, which shall be denoted by 0~, is a real-valued differentiable 
function on the one-dimensional  subspaces of  T ~ ( M )  where now M is an 
n-dimensional  posit ive definite Riemannian  manifold.  I t  is defined in 
components  at p by 

Op(K) = R~bk~kb 
g~k,~k b (4.1) 

where k is any nonzero member  of  the one-dimensional  subspace K and 
where g ~  are the components  of  the positive definite metric at p. Tha t  0~ is 
independent  of  the choice of  nonzero member  of  K is clear. So 0p is a differ- 
entiable map :  P ( n -  1, R ) - +  ~ and since the ( n -  1)-dimensional real 
projective space P(n - 1, ~)  is a manifold diffeomorphic to the Grassman  
manifold G(1, n), one may  choose the usual Gras sman  coordinates abou t  k. 
An o r thonormal  set of  vectors at p, el, e2, �9 �9 en is selected with k = el such 
that  the members  of  a chart  abou t  k are coordinat ized by the (n - 1)-tuple 
(xl, x2, �9 �9 xn_~) if they are spanned by the vector  e~ ~- xle2 + �9 �9 �9 + xn_le.~. 

The critical points  of  0p may  now be examined by the same method as that  
used previously in this paper  and one readily achieves Eisenhart ' s  result that  
the critical points and associated critical values of  0~ are precisely the eigen- 
directions and associated eigenvalues of  the Ricci tensor at p. 

I f  M is a space-time, one might  consider the function in (4.1) defined for  
non-null  directions only and ask if it can be cont inuously extended to null 
directions and if Eisenhart ' s  theorem can be generalized. I t  turns out that  if 
0p can be continuously extended to a single null direction represented, say, 
by the null vector  1 ~ Tp (M) ,  then necessarily the Ricci tensor  is p ropor t iona l  
to the metric tensor at p and so 0p is a constant  function. To  see this, one 
considers sequences of  non-null  directions spanned by vectors of  the fo rm 
1 + t~:, where ~ is, in turn,  the vector  x,  y ,  �89 + y),  and m, where {t~} is a 

5 This result disagrees with a theorem in Section 33 of the book by Eisenhart (1966) in 
much the same way as Thorpe (1969) disagrees with a similar theorem for Riemann 
tensors in the book of Petrov (1969). Also, the classification scheme for symmetric 
tensors in the same section of Eisenhart's book is incomplete in that the case of complex 
eigenvalues is not considered. 
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sequence of nonzero real numbers convergent to zero, and where the general 
notation of Section 3 is used. This gives the following relations at p:  

R~bl~x b = R~bl~y b = R~bl~l b = R~bx~y b = 0 
(4.2) 

R~bx~x b = R ~ y ~ y  b = R~bl~m ~ 

Finally, consideration of a sequence of non-null directions spanned by vectors 
of  the form l + s~rn + t ~  where ~ is, in turn, the vector x and y and where 
{s~} and {t~} are sequences of  real numbers convergent to zero, arbitrary except 
for the restriction t, 2 + 2s~ # 0 for each n, yields at p 

R~bm~rn b = R~brn~x b = Rabrn~y b = 0 (4.3) 

Equations (4.2) and (4.3) imply that 

R~b = 1R(2l(~mb) + x~xb + Y~Yb) = �88 (4.4) 

where the completeness relation at p for the null tetrad has been used. This 
is the required result. 

For  a space-time then either 0p is a constant function, or the critical 
points of  0~ are precisely the spacelike and timelike eigendirections of the 
Ricci tensor. 
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A P P E N D I X  

Here, a brief summary of the use of the E tensor in the classification of 
the Ricci tensor will be given. Further details may be found in Cormack and 
Hall (1979). Let (1, m, t, i) be a complex null tetrad a t p  with l . m  = t . [  = 1 

the only nonvanishing inner products between the tetrad members and let 
the associated complex bivectors be given in components by V~b = 21Ejb2, 
U~b = 2mE,ibm, and M~b = 21c~mb; + 2fE~tb~. The tetrad is assumed oriented so 
that these complex bivectors and the real bivectors used in this paper are 
connected by the relations V~b = Fab + iF*b, Uao = N~b + iN*b, and Mab = 
Wab + iW*b .  Also, one has the completeness relation 

g~Ecg~b + li(--g)11~%bc~ = Va~gc~ + U~Vc~ -- �89 

The four algebraic (Segr6) types for the Ricci tensor may now be 
described. 
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Type (z, ~, 1, 1} and its Degeneracy. In this case, the null tetrad at p can 
be chosen so that 

E ~ a  = Re (AI(U~bU~a - F~bV~a) + A2M--~bM, a + As(U~V~a + V~bU~a)} 

(A~ # O) 
R~o = ,~(l~lo - m~mo) + 2a~l(~mo> + a~x~x~ + ,~y~yo (a~ r O) 

where here and throughout the Appendix, capital Latin letters and Greek 
letters denote real numbers and 2z/~t~ = x~ + iy,. 

In this type, a unique spacelike invariant 2-space is admitted. The Ricci 
tensor admits no null eigenvectors. 

Type {1, 1, 1, 1} and its Degeneracies. In this case, the null tetrad at p 
can be chosen so that 

R~b = ~(l~Ib + m~mb) + 21321~mb~ + 133X~Xb + ~Y~Yb 

Here, the Ricci tensor is diagonalizable and if the four eigenvalues 
(/32 _+ /~),/~3, and/34 are all distinct, exactly three spacelike invariant 2-spaces 
are admitted. Otherwise there are infinitely many spacelike invariant 2-spaces. 
Such Ricci tensors admit either no or at least two null eigendirections. 

Type {2, 1, 1} and its Degeneracies. In this case, the null tetrad may be 
chosen so that 

E~b~a = Re (C~V~bVca + C2M--~bM~a + C3(U~bV~a + V~Uca)} (C~ r O) 

R~b = 271l(~mb) + 7l~lb + 72xJb  + 73Y~Yb (7 ~ O) 

The cases (2, 1, 1} (7z, 72, 73 all distinct) and (2,(1, 1)} (72 = 73 r 7z) give a 
unique spacelike invariant 2-space. The other degeneracies give infinitely 
many spacelike invariant 2-spaces. The Ricci tensor admits the unique null 
eigendirection l ~. 

Type {3, 1} and its Degeneracies. In this final case, the null tetrad may 
be chosen so that 

Eabca = Re (DI(M~bMca - 2U~bVca -- 2F~Uca) + D2(V~M~a + Jk~r~bVca)} 

(D~ ~ O) 

R ~  = 231I(~mb) + 28lc~xb ~ + 31x~xo + 32Y~Yb (3 ~ 0) 

In this case, no spacelike invariant 2-spaces are admitted. The Ricci 
tensor admits the unique null eigendirection l ~. 
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